
www.manaraa.com

Multi-Objective Assessment of Pre-Optimized
Build Orders Exemplified for StarCraft 2

Matthias Kuchem
Computational Intelligence Group

TU Dortmund

matthias.kuchem@tu-dortmund.de

Mike Preuss
Computational Intelligence Group

TU Dortmund

mike.preuss@tu-dortmund.de

Günter Rudolph
Computational Intelligence Group

TU Dortmund

guenter.rudolph@tu-dortmund.de

Abstract—Modern realtime strategy (RTS) games as Star-
Craft 2 educe so-called metagames in which the players com-
pete for the best strategies. The metagames of complex RTS
games thrive in the absence of apparent dominant strategies,
and developers will intervene to adjust the game when such
strategies arise in public. However, there are still strategies
considered as strong and ones thought of as weak. For the
Zerg faction in StarCraft 2, we show how strong strategies
can be identified by taking combat strength and economic
power into account. The multi-objective perspective enables
us to clearly rule out the unfavourable ones of the single
optimal build orders and thus selects interesting openings
to be tested by real players. By this means, we are e.g. able to
explain the success of the recently proposed 7-roach opening.
While we demonstrate our approach for StarCraft 2 only, it is
of course applicable to other RTS games, given build-order
optimization tools exist.

I. INTRODUCTION

Analysing and designing realtime strategy (RTS) games
may be one of the ultimate challenges for AI game
research as these games are highly complex. At the
same time they attract millions of gamers – thus they
also have considerable economic impact, although their
relative importance has weakened in recent years. One
of the interesting by-products of famous strategy games
as e.g. StarCraft 2 is the emergence of a lively commu-
nity that drives forward the metagame. Simply put, the
metagame is what happens outside of the game, but
in case of RTS games it is mostly about strategies and
counter-strategies. Successful strategies emerge and are
later discarded again when good counters are found. We
state that this strategy-finding is a complex optimization
problem which can partly be automated. The most sim-
ple, very restricted part of it considers only openings,
namely the utilised build orders. The overall task of this
work is to demonstrate how build order optimization
can be combined with concepts from multi-objective op-
timization in order to obtain a recommendation system
for good openings, and also explain why the recently
discovered 7-roach rush1 is good. Another, related use
of build order optimization by means of coevolution
in order to prevent too dominant strategies within the

1originally posted by the author of EvoChamber on http://www.
teamliquid.net/forum/viewmessage.php?topic_id=160231

design process of a game has recently been reported for
balancing the new game City Conquest. 2

It seems that research on build orders for realtime
strategy (RTS) games has only recently become an object
of academic interest. However, this is undoubtedly an
important area at least for the players. It should be also
for the game design process, for at least two reasons:

• Long-time player satisfaction with an RTS game
partly depends on the possibility to explore and ex-
periment with new strategies (community building).

• AI controlled players (bots) shall be able to apply
reasonably good build orders to ensure that defeat-
ing them is not too easy.

Existing approaches mostly consider the planning pro-
cess towards a given target as [1] and its predecessors
[2] and [3], or concentrate on matching openings with
respect to the opponent strategy [4]. [5] employs case-
based reasoning (CBR) to extract building sequences from
StarCraft replays. Interestingly, [6] couples the strategy
planning process with build order optimization.
Our approach acts on a different level, as we are

interested in comparing already optimal build orders in
a multi-objective fashion. It could be used as a decision
aid on top of the previously mentioned works, ruling
out build orders that may be optimal, but should not
be applied because one could get much more in about
the same amount of time (e.g. economical power). We
do not try to find interesting build orders in replays of
human games but conversely provide a tool for humans
to detect new ones. Although we focus explicitly on
the Zerg faction in StarCraft 2, the approach is (given
suitable tools for optimizing the build order) transferable
to other factions and games whenever there exists an
economic component that builds the basis of military
power.
At a first glance, one may ask why the economic

perspective is important at all when build orders for
rush strategies3 are optimized. If only an all-in use of

2http://aigamedev.com/open/interview/
evolution-in-cityconquest/

3rushes use units early available in the game to start a quick attack
in order to destroy the enemy base before it can be fortified

978-1-4673-5311-3/13/$31.00 ©2013 IEEE

www.manaraa.com

these strategies is considered (build combat units and
try to annihilate the enemy at a predefined point in
time without a backup plan), economy can surely be
neglected. However, there are good reasons to take it
into account:

• Players who opt for rush strategies need to deliver
a certain amount of damage to the opponents even
if these cannot be defeated at once. In case both
survive (which is not unusual), the ratio of own
economic power to the remaining economic strength
of the opponent is crucial for winning the game.

• In a game with more than 2 players, rushing is
very risky and if it fails, one is thrown back to
further development, for which the economical basis
is decisive.

In a nutshell, our approach is to detect the quickest
build orders to obtain a certain number of attack units
over a whole variety of unit types and numbers and
some popular 2-type unit combinations, record their
economic power (number of worker units) and then
analyse the results in a multi-objective fashion by ruling
out dominated strategies.

However, domination shall not be understood as tra-
ditionally used in multi-objective optimization. Origi-
nally, we have 3 objectives here: military unit number
(combat strength) and worker unit number (both to be
maximized), time (to be minimized). Each solution we
consider is itself the result of an optimization process,
namely of finding the quickest build order for a given
military unit number. By using this optimality, we can
ensure that combat strength increases monotonically
over time, which in turn can be used for altering the
domination concept and effectively reduce the number
of considered objectives to 2. The modification of the
domination concept is very simple: solutions only dom-
inate others if they provide more combat strength (equals
higher build time) AND higher economic power. One
could argue that a higher number of attack units shall
always come with a larger amount of workforce, but
StarCraft 2 is obviously too complex for such a simple
relation, and our results show that this is indeed not the
case.

We now apply the basic idea of evolutionary multi-
objective optimization to the outcome of our system-
atic build order study: keep only the non-dominated
(Pareto optimal) population, or in other words, the ideal
compromises. The basic notions of (evolutionary) multi-
objective optimization can be grasped from [7], chapter
9.

This work does not focus on new fancy AI algorithms
but puts together existing methods in a new fashion in
order to support and understand RTS metagames. Our
contribution is exactly the architecture that brings these
game-specific parts together and couples them by means
of multi-objective optimization, which is of course easily

done also for other games if an appropriate build order
optimization tool exists.

Here, we use as build order optimization tool a freely
available method (EvolutionChamber by Ronald Ray
(aka Lomilar)4 which uses a genetic algorithm (GA) based
approach) in a different way than it was originally con-
ceived. Here, we concentrate on build order properties
of the Zerg faction and present some interesting insights
on this matter.

However, our analysis should not be interpreted as the
last word on Zerg build orders as due to the nature of the
employed method and the vastness of the search space
we cannot guarantee optimality of the results. We would
not expect that our results on rush build orders can be
improved by a large margin, but we completely neglect
an important factor: We abstain from tackling relevant
non-rush (tech and late-game focused) build orders as
this would be a much more difficult endeavour.

Fig. 1: Zerg base attacked by Protoss units

We now start by providing some background informa-
tions on StarCraft 2, and then introduce the employed
EvoChamber tool in section III. The basic ideas of our
multi-objective approach are containted in section IV,
followed by the display and discussion of the obtained
results (section V), a technical discussion that evaluates
the EvolutionChamber tool, and the conclusions.

II. STARCRAFT 2 PRIMER

StarCraft 2 (see figure 1) was published in 2010 as
long-awaited successor of the extremely popular real-
time strategy (RTS) game StarCraft of 1998. Besides im-
proved graphics, gameplay and opponent AI, the basic
game mechanisms have not been changed: There are
three very different factions, each with their own build
processes, tech trees, units, and their specific advantages

4http://code.google.com/p/evolutionchamber/

www.manaraa.com

and disadvantages. These factions are: Terran (human-
like), Zerg (biomorph), and Protoss (psionic). Game me-
chanics differ quite a lot for the factions, e.g. most Terran
buildings can fly (very slowly), and Zerg buildings are
not produced, Zerg drones (workers) morph into the
desired buildings.
The balancing of the factions is remarkably stable,

so that even on the grandmaster level (top 200 players
of every region, current regions are: Americas, Europe,
Korea, Taiwan, Southeast Asia), there are no clear prefer-
ences for one faction over the others over a longer period
of time. However, the metagame from time to time leads
to the discovery of a strong strategy that favors one
faction if played well and not countered early. Over
time, counter-strategies come up which remove again
the temporary advantage of that faction. In this work,
we concentrate on the Zerg only as the employed build
order optimization tool (EvolutionChamber) cannot deal
with the other races. But in principle, the same approach
could be used for Terran and Protoss.
The Zerg race starts the game with a hatchery, 6 drones

and an overlord. The hatchery is the main building
which produces larva that can morph into most units.
Drones are the workers who gather ressources from
mineral patches and extractors on vespene gas geysers.
Each overlord provides 8 supply, limiting the maximum
number of units. Besides the amount of gathered re-
sources, supply and larva are the limiting factors for unit
production. The larva production on hatcheries can be
increased with queens.
There are several Zerg units available, all with differ-

ent tech-trees. Here, we introduce the ones covered in
the presented build orders.
Zergling The first army unit in every Zerg tech-tree.

Two zerglings spawn from each larva. They are
weak in attack and defense, but cheap and early
available. With speed upgrade, they are the fastest
unit in StarCraft 2.

Roach Relatively quickly available and cheap, with sim-
ple tech-tree. Possesses low damage rate, but good
defense.

Mutalisk Fast flying units, mostly used to harass enemy
workers and very useful against all units without
anti-air attack. Mutalisks have an expansive tech-
tree and take time to produce.

It is also possible to upgrade weapons and armor,
which is considered on the roach unit in the second build
order. More detailed information on all units, resource
costs and build times are provided by Liquipedia [8].
A build order is a list of ingame actions. As an example,

we list the shortened version of the generated 7 roach
rush build order below (build order II.1). The reason
for looking after a fixed build order is to guide players
through the opening, which is otherwise pretty complex
due to the number of possible actions and the difficulty
to detect a good path even for a clearly defined goal.

When we speak of usually considered build orders for
Zerg players, we refer to professional gamers, competing
in the big tournaments as GSL, MLG, IPL, IEM and
Blizzard Invitational. How do these players generate
their opening build order? Their basic idea is to produce
as many drones as possible, while teching up for the unit
composition of their choice. But all testing and optimiza-
tion is done by experimenting and playing; although it
is possible to calculate the efficiency of specific build-
orders. This is due to the lack of feature-rich analyzation
tools and the necessary computation time.

0:51 10/10 extractor trick
1:04 11/10 overlord
1:31 11/18 spawning pool
2:04 14/18 extractor, send on 2:39; 2:56; 3:07
2:39 16/18 roach warren
2:56 15/18 queen
3:07 17/18 overlord
3:25 18/18 overlord
3:34 18/26 extractor trick
3:39 18/26 7 roaches

Build order II.1: generated build order for 7 roaches,
shortened by not listing drone builds, these are encoded
in the second column

As of 2013, the focus of Zerg players is to strengthen
the economy as much as possible, while maintaining
map control and pressure on the enemy. Therefore, most
of their build orders are late- or mid-game focused
while our build orders focus on early game dominance.
However, it is part of the current metagame to start
an early game focussed build order when your enemy
expects a drone focused build to punish this assumption
and the corresponding build decisions. This follows the
reasoning to confuse the enemy by pressuring him and
hurt his economy. Sometimes it is even possible to win
the game right away.

III. OPTIMIZATION VIA

EVOLUTIONCHAMBER

Our basic tool for detecting (near-)optimal build or-
ders is the EvolutionChamber program which only deals
with the Zerg faction of StarCraft 2. SCfusion5, another
similar and more efficient tool unfortunately lacks a
command line interface and can thus not be automated.
Every single build order optimization (of which we have
done thousands) must be initiated manually via its GUI.
EvolutionChamber is based on the JGAP [9] library

that provides generic GA and genetic programming (GP)
components. EvolutionChamber is started by providing
waypoints that consist of a maximal time and a targetted
set of units/buildings/ technologies. It then computes
the strategy that produces this set in the shortest possible

5available at http://code.google.com/p/scbuildorder/

www.manaraa.com

time, with the number of drones (Zerg workers) as a
second objective. We use it with one waypoint only, but
several would be possible.
Internally, EvolutionChamber employs a fixed length

(based on the input goals) encoding for every individual
(chromosome) that lists the different build commands
and other actions in the order that is then simulated,
including units, buildings and technologies. The list
of possible actions also include special actions as e.g.
the extractor trick6, mining and waiting. During the
simulation phase, these encoded actions are carried out,
starting from the usual set of a hatchery, six drones
and one overlord (which is given and not evolved),
and evaluated by means of a fitness function which is
described in the following.

A. Fitness function

The game state resulting from the simulation is com-
pared to the target defined by the provided waypoint.
For each unit/ building/technology in the waypoint list
that was actually built its resource value (minerals plus
vespine gas) is added up. For every other built unit,
the hundredth of this value is added, for additional
technology buildings (if one of this type already exists)
this value is halved again. The next step is to test if
the target has been reached. If this is not the case, only
some points are added for the remaining resources (with
a factor of ≈ 0.001). For every non-executable encoded
action, the result is decreased by one point.
If the target has been achieved, a constant bonus of

500 points is added and the remaining resources are
converted into points with a higher factor of ≈ 0.01.
More importantly, the time saved with respect to the
given target time is added using the following formula:
(target time/needed time)

2
.

Unfortunately, we do not know the design criteria of
the fitness function. However, we find that the most im-
portant factor is the time needed to reach the target, and
that the number of units/buildings/technologies during
this time is maximized. As drones get a higher weight
than all other units, maximization of the economic power
can be seen as implicitly given as a secondary objective.

B. Genetic operators

EvolutionChamber uses a number of operators to
generate new individuas (chromosomes), some of which
are very problem-specific. Note that we did neither
design nor modify these operators, although there may
be room for improvement here. They are executed in the
following order:
cleaning operator Looks for the current best individual

and uses it as basis for creating n new ones, where n

6By starting to morph a drone into an extractor, the unit counter can
be decreased so that a new drone can be built. Cancelling the morph
then leads to a situation where the number of units is actually one
higher than the maximum number, which depends on the number of
existing overlords.

is the current length of the individual. Within each
new individual, the ith gene (i runs from 1 to n) is
left out. The idea behind is that superfluous actions
can be deleted.

overlord operator This operator works almost like the
cleaning operator, however, instead of deleting the
ith gene it is replaced by the action build overlord
to ensure that the unit limit is high enough for the
other encoded actions to actually be executed.

insertion operator Copies randomly chosen individuals
and adds a random action at a random position.

removal operator Copies randomly chosen individuals
and randomly deletes one action from the copy.

rotation operator Copies a randomly chosen indivdual
and reverts the order of two consecutive genes.

exchange operator Two genes of an individual are cho-
sen and a new individual is created that contains a
copy with the two genes exchanged.

C. Setup and stopping criterion

For every single target (sought unit combination, see
below), we executed 10 runs with 8 concurrent opti-
mization processes. A run was stopped when no further
improvement was found for more than 400 generations
within each process. In consequence, every target was
pursued 80 times. The population size for each run was
set to 400 after some manual testing.

IV. MULTI-OBJECTIVE ANALYSIS

As already stated in the introduction, we are interested
in the dominant strategies in the sense that these form
a Pareto front between the objectives of more attack
and more economic power. However, we demand that
a dominating solution is better in both objectives. This
of course means that quicker build orders shall never
dominate longer ones (as both are (near-)optimal with
regards to the number of combat units produced). In
the standard multi-objective formulation of the domi-
nance principle, the latest solution would dominate all
others. However, we have to adapt this principle here to
take into account that the solutions are not comparable
anyway: they are solutions to different optimization
problems (build x units vs. build y units where x < y).

Furthermore, we are especially interested in quick
solutions as rush strategies have the highest probability
of success if the attack starts early. A Pareto front be-
tween time/combat strength and economic power leads
to strong attacks at different timings but always backed
by strong economic power. All optimal build orders with
relative weak economy are disregarded.

One could also try to take different unit types into
account for comparison, but it would be very hard to
compare e.g. a zergling rush to a roaches rush because
success highly depends on the opponent strategy which
is not considered here (and which is also usually not

www.manaraa.com

www.manaraa.com

right axis). As expected, build times grow monotonously
with the number of zerglings. However, the number of
drones (economic power) does not show such a clear
correlation to the build time. In order to detect the Pareto
front between timing and economic power, the right
figure depicts only the number of drones over time,
and the red rectangles give the non-dominated points,
with the according number of attack units plotted as
numbers next to the points. The red lines can therefore
be interpreted as the Pareto front. We presume that
only the non-dominated strategies (with the number of
drones growing with the number of attack units) can
be recommended as openings as the ones between the
points give away a possible economic development.

V. CONCRETE RESULTS

In the following, we present and interpret the results
for the unit types zerglings, roaches, and mutalisks.These
are probably the most important rush strategies for the
Zerg faction. Others could be computed in the same
fashion, but we need to restrict the types due to space
constraints. However, the exact choice regarding scout-
ing or no scouting and upgrade technology selection
may be somewhat subjective.

A. Zerglings

As zerglings are the first attack units that become
available and themselves often used for scouting, all
investigated strategies abstain from doing extra (drone)
scouting beforehand.

a) Zerglings without metabolic boost (speed upgrade):
require almost no tech structure. Therefore, rushing with
zerglings is the earliest push one can make. In the
StarCraft community, the 6 pool is quite famous. This
means that the spawning pool for zergling production
is built as early as possible (without developing any
more drones) and zergling production is started as soon
as it is finished. With respect to our results in fig. 2a,
this is a good strategy until more than 18 zerglings
are produced initialy. It is important to send the first
produced zerglings to the oponents base to prevent
a Protoss or Terran oponent from walling their base
off with buildings. Therefore, even the second Pareto
optimal point with 20 zerglings is not playable vs. Terran
or Protoss on most maps (standard 2 or 3 building
wall off) as the first attack units spawn too late. On
the other hand, this build order is good against any
Zerg opponent: The first pair of zerglings spawn shortly
after a 6 pooling opponent strategy can reach the own
base (2:14 + travel time vs. 2:51). Which means that this
strategy is superior to the 6 pooling strategy, being safe
against all early pushes while producing more drones
and attacking units.

b) Zerglings with metabolic boost (speed upgrade): are
far stronger than zerglings without the upgrades: Since
they are melee units, they need to surround the enemy

unit to deal maximal damage in masses. They are also
the fastest units in game on creep, so they can prevent
every other unit from escaping. Our results (fig. 2b) on
this composition are rather disappointing, since the first
Pareto optimal build-order builds 4 zerglings, delayed
to 4:12 for speed upgrade and the next Pareto optimal
point is on 5:19 with 30 zerglings, which is far too
late considering counter-strategies, even for Zerg with
roaches (Terran and Protoss will be walled off, first
zergling in this build order spawns on 2:47 which is
too late to hurt an opponents Zerg economy in order
to prevent him from building roaches countering the
zerglings). Therefore this composition is a good follow
up strategy after a first rush without speed upgrade
(since all upgrades apply to the already existing army),
but not a good opening.

B. Roaches

Roaches are considered to be mainly an early to mid-
game unit, for its simple tech-tree and low resource costs.
The basic goal of a rush is to reach the opponent’s base
before it is heavily guarded. Therefore, it is possible to
scout with the first roaches, which arive at a good scout-
ing timing on the enemies base (although not scouting
with drones always bears the risk of not detecting a 6
pool enemy strategy with its weak but very quick rush).
Interestingly, roach rushes are very popular within

the StarCraft community. For example, in 2010 a user
suggested a 5 roach rush on the TeamLiquid forums7,
describing it as a solid build (not all-in), because of
its good economic power. In fig. 3a, we indeed find
this build as one of the Pareto optimal points. A few
months later, a 7 roach rush strategy became famous
as a very strong push with very good economy. This
build was generated with the EvolutionChamber by its
author, searching for an even stronger build than the 5
roach rush8. The results depicted in fig. 3a also support
this strategy as it is Pareto optimal. Furthermore, it is
not very likely that a good 8 or 9 roaches rush will be
discovered. The other two Pareto optimal points (10 and
16 roaches) may be strong pushes, but they reach at the
opponents base much too late, when it will most likely
be already well defended (a 7 roach rush normaly arrives
right at the time when defense is in production).

C. Mutalisks

As mutalisks appear relatively late in the game (as
do hydralisks), scouting appears to be mandatory. Our
results in fig. 3b provide several options with 5 Pareto
optimal builds out of 10. The first one can be dismissed
as a single unit is not strong enough to do any rea-
sonable damage within a given time. Besides, going for

7http://www.teamliquid.net/forum/viewmessage.php?topic_id=
145740

8http://www.teamliquid.net/forum/viewmessage.php?topic_id=
160231

www.manaraa.com

www.manaraa.com

optimization is very dependent on the use of specific
techniques (e.g. the extractor trick), and if these are left
out, it will not be possible any more to reach the best
solutions.
This may also be the reason why EvoChamber only

utilizes the Zerg faction; transferring it to other factions
or even games not only means to load another table of
unit properties but also to respect many game-specific
subtleties which prevents us from obtaining a general
build order optimization method as well as from easily
transferring the results to other games.
From the application point of view, EvoChamber is

surely not optimal in many ways, e.g. we obtain many
superfluous extractor tricks. The utilized search oper-
ators seem to be sufficient to enable reaching good
solutions, but our impression is that they are not very
efficient so that a lot of computational power is wasted.
The fixed length representation is also problematic, be-
cause the limit could be chosen too low to enable some
very complex but good build orders, and for the more
simple ones it means unnecessary effort. The employed
fitness function (encoded in EvoChamber) may also be
revised, as there are several constants with an ad-hoc
character. Besides only evaluating the results of a lot of
single-criterion optimization runs, one could also think
of a pure multi-objective approach that should be able
to obtain the non-dominated solutions much quicker,
preferrably in a single run. The results of this paper
could then serve as a basis for evaluating this approach.
Despite the many points of critisism we have named,

we are grateful that the EvoChamber system exists and
works pretty well.

VII. CONCLUSIONS AND FUTURE WORK

We have applied an existing StarCraft 2 build order
optimization tool in a completely new way, motivated
by the inherently multi-objective perspective of the latest
findings in the StarCraft 2 metagame (e.g. 7 roach rush).
To our knowledge, there are currently no scientific works
concerned with analysing RTS metagames to the point
that new, most likely very good openings (or their build
orders) can be detected. Our approach largely automa-
tises this (still, many ingredients have to be assumed or
provided as expert knowledge and cannot be automati-
cally detected).
By systematically investigating the best build orders

for meaningful numbers of attack units and also review-
ing their economic component, we provide an insightful
and new comparison of opening strategies that may
be interesting for players as well as for AI designers,
and a (meta-)method that may be transferred to other
RTS games. It shall also be interesting to develop this
approach further to provide the Pareto optimal solutions
in one run, but the results would be more or less the
same, this would only reduce the computational cost
(probably dramatically).

Taking into account the concrete results for the differ-
ent unit types, it seems that there is a basic difference
between the simpler ones for the early units (zerglings,
roaches) and the later units (mutalisk, hydralisk). The
build orders for the latter apear to be more stable,
with fewer dramatic shifts. For the zerglings, we can
recognize such a strategy shift from 18 to 20, and the
reason is that in order to reach 20, a queen has to be
produced to increase the larvae production rate. From
this example we can conclude that StarCraft 2 build
orders are fairly complex and not easily scalable even
for relatively simple targets, which shall be seen as an
advantage of the underlying game.
Besides a pure multi-objective approach, many exten-

sions of the current work can be imagined, of which the
most tempting may be comparing different unit types.
While this may be very difficult, one could do a small
step into that direction e.g. by comparing simple units
with their upgraded versions to see when and under
which conditions upgrades pay off.

REFERENCES

[1] B. G. Weber and M. Mateas, “Case-based reasoning for build order
in real-time strategy games,” in Proceedings of the Fifth Artificial
Intelligence and Interactive Digital Entertainment Conference, AIIDE
2009, October 14-16, 2009, Stanford, California, USA, C. Darken and
G. M. Youngblood, Eds. The AAAI Press, 2009.

[2] A. Kovarsky and M. Buro, “A first look at build-order optimization
in real-time strategy games,” in Proceedings of the GameOn Confer-
ence, Braunschweig Germany, 2006, pp. 11–22.

[3] H. Chan, A. Fern, S. Ray, N. Wilson, and C. Ventura, “Online
planning for resource production in real-time strategy games,” in
Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), 2007, pp. 65–72.

[4] G. Synnaeve and P. Bessière, “A bayesian model for opening
prediction in rts games with application to starcraft,” in 2011 IEEE
Conference on Computational Intelligence and Games, CIG 2011, Seoul,
South Korea, August 31 - September 3, 2011, S.-B. Cho, S. M. Lucas,
and P. Hingston, Eds. IEEE, 2011, pp. 281–288.

[5] J.-L. Hsieh and C.-T. Sun, “Building a player strategy model by
analyzing replays of real-time strategy games,” in IJCNN, 2008,
pp. 3106–3111.

[6] D. Churchill and M. Buro, “Build order optimization in starcraft,”
Proceedings of AIIDE, pp. 14–19, 2011.

[7] A. Eiben and J. Smith, Introduction to evolutionary computing, 2nd ed.
Springer, 2007.

[8] Team Liquid, “Liquipedia, the StarCraft II encyclopedia,” 2012.
[Online]. Available: http://wiki.teamliquid.net/starcraft2/Zerg_
Strategy

[9] K. Meffert, “JGAP java genetic algorithms package,” 2012.
[Online]. Available: http://jgap.sourceforge.net

